Organosulfate Formation in Biogenic Secondary Organic Aerosol

Jason D. Surratt,¹ Yadian Gómez-González,² Arthur W. H. Chan,³ Reinhilde Vermeylen,² Mona Shahgholi,¹ Tadeusz E. Kleindienst,⁴ Edward O. Edney,⁴ John H. Offenberg,⁴ Michael Lewandowski,⁴ Mohammed Jaoui,⁵ Willy Maenhaut,⁶ Magda Claeys,² Richard C. Flagan,³ and John H. Seinfeld³

- ¹ CALTECH, Chemistry
- ² University of Antwerp, Pharmaceutical Sciences
- ³ CALTECH, Chemical Engineering and Environmental Science & Engineering
- ⁴ Environmental Protection Agency
- ⁵ Alion Science and Technology
- ⁶ Ghent University, Analytical Chemistry

Details of this study can be found online at <u>J. Phys. Chem. A AS&P Articles</u>

9th ICCPA, Biogenic and Marine Aerosol Section, Tuesday, August 12, 2008

Background

- Biogenic SOA formation enhanced in the presence of acidified sulfate seed aerosol
 - proposed source: acid-catalyzed particle-phase reactions
 - high-MW products

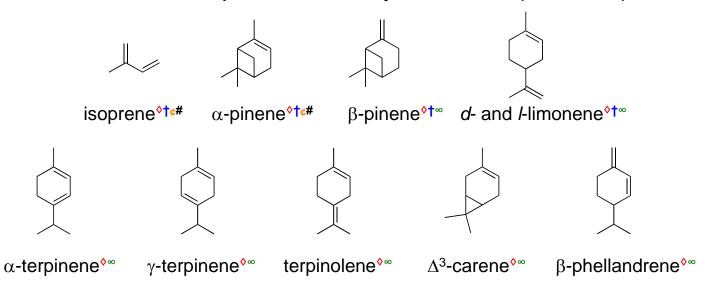
```
[Jang et al., 2002, Science]

[linuma et al., 2004, Atmos. Environ.]

[Tolocka et al., 2004, ES&T]

[Gao et al., 2004, ES&T]

[Surratt et al., 2006, J. Phys. Chem. A]
```


Importance of particle-phase reactions to ambient aerosol remains uncertain

 Organosulfates of isoprene and α-pinene [Surratt et al., 2007, ES&T], as well as β-pinene [linuma et al., 2007, ES&T], have recently been observed in both laboratory-generated and ambient SOA

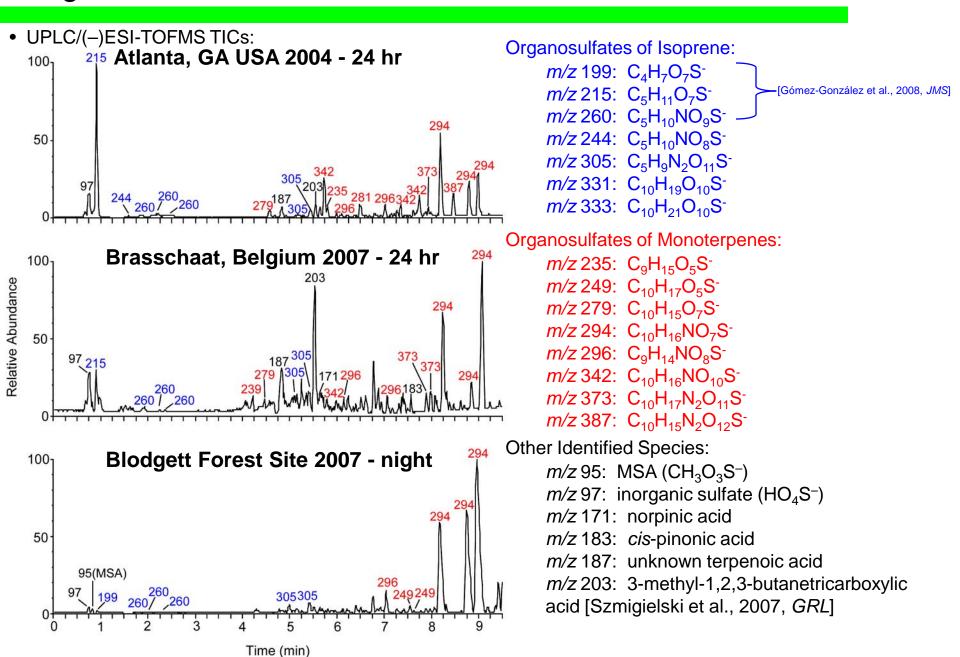
```
[Romero and Oehme, 2005, J. Atmos. Chem.] [Reemtsma et al., 2006, Anal. Chem.]
```

Objectives

 Comprehensive laboratory investigation of organosulfate formation from the oxidation of 10 terpenes under dry conditions (RH < 9%):

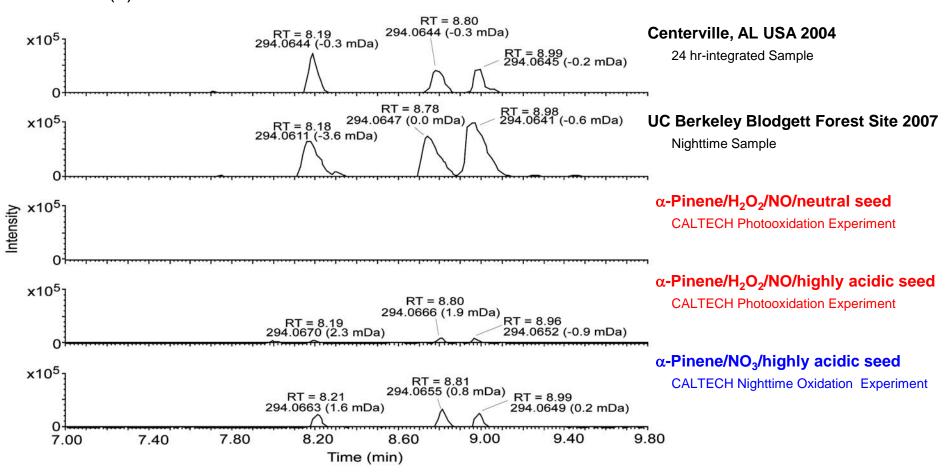
⇒ = photooxidation (I.e. OH-initiated oxidation) examined
 † = nighttime oxidation (i.e. NO₃-initiated oxidation) examined
 ¢ = low-, intermediate-, and high-NO_x conditions examined
 # = neutral, acidified, and highly acidified sulfate seed examined
 ∞ = intermediate-NO_x conditions and highly acidified seed only

Details of Chamber Operating Procedures: [Kroll et al., 2006, ES&T] [Surratt et al., 2006, *J. Phys. Chem. A*] [Ng et al, 2007a, *ACP*] [Ng et al., 2008, *ACP*]

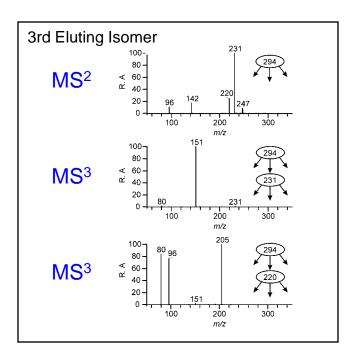

 Analyze and compare composition of laboratory-generated and ambient aerosol using advanced ESI-MS techniques to evaluate atmospheric significance of organosulfates

Caltech Indoor Chambers

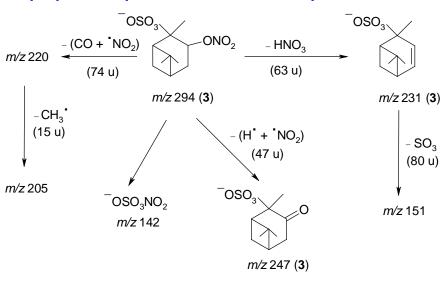
- 2 Teflon chambers, 28 m³ each
- Scanning differential mobility analyzer (DMA)
- Teflon filters:
- UPLC/(–)ESI-high resolution-TOFMS:
 - ❖ mass resolution ~ 12 000
 - accurate mass measurements (elemental compositions) - lock mass correction
- HPLC/(–)ESI-Linear Ion Trap MS:
 - tandem MS measurements
 - structural elucidation & confirmation


Organosulfates in Ambient Aerosol

Source of m/z 294 Nitrooxy Organosulfates ($C_{10}H_{16}NO_7S^-$)


• Source previously proposed to be α-pinene but other monoterpenes could not be ruled out [Gao et al., 2006, *JGR*; Surratt et al. 2007a, *ES&T*; linuma et al., 2007, *ES&T*]

• UPLC/(–)ESI-TOFMS EICs of *m/z* 294:



Structural Characterization of *m/z* 294 Nitrooxy Organosulfates

• Tandem MS experiments using the HPLC/(–)ESI-LITMS techniques:

proposed explanations for observed product ions

Detailed tandem MS data for other two isomers available in Surratt et al. [2008, J. Phys. Chem. A]

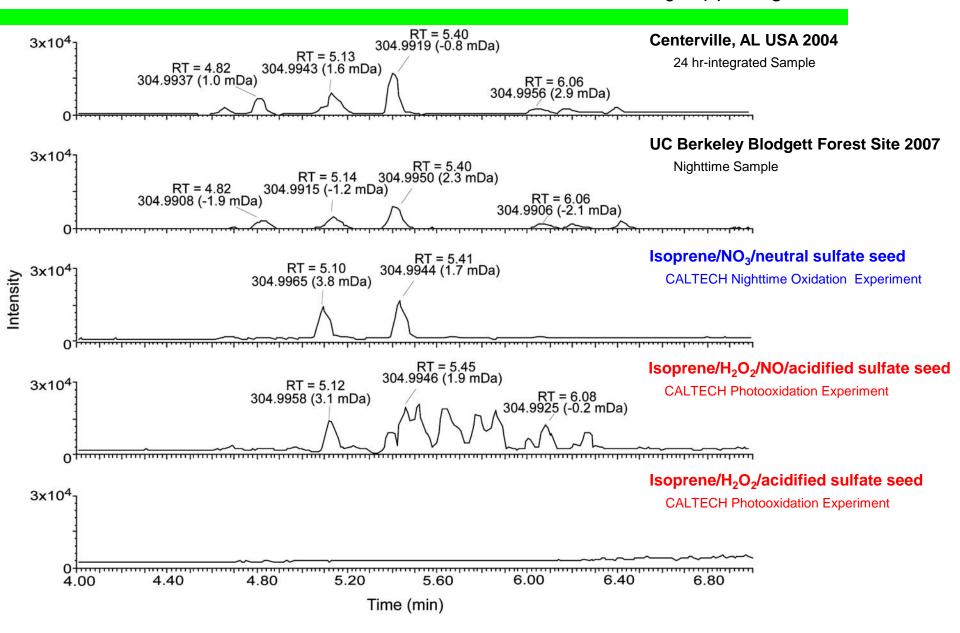
Proposed Formation of α -Pinene m/z 294 Nitrooxy Organosulfates

- Reactive uptake of gas-phase hydroxynitrates proposed to yield these products [Liggio et al., 2005, ES&7] [Liggio et al., 2006, GRL] glyoxal and pinonaldehyde
- Recent bulk solution studies [Minerath et al., 2008, ES&T] suggested that alcohol sulfate esterification may not be kinetically feasible to explain observed organosulfates
- Reactive uptake experiments using dihydroxypinane and α-pinene epoxide needed

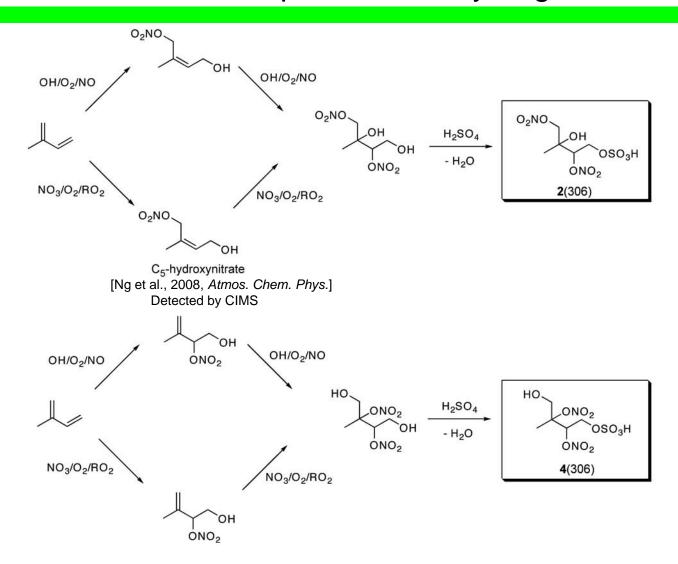
Source of m/z 296 Nitrooxy Organosulfates (C₉H₁₄NO₈S⁻)

 Observed previously in S.W. and S.E. USA summer aerosol - source unknown [Reemstma et al., 2006, Anal. Chem.; Gao et al., 2006, JGR]

UPLC/(-)ESI-TOFMS EICs of m/z 296: RT = 7.00Birmingham, AL USA 2004 100 296.0443 (0.3 mDa) 24 hr-integrated Sample RT = 5.85RT = 6.09296.0439 (-0.1 mDa) 296.0436 (-0.4 mDa) d-Limonene/H₂O₂/NO/highly acidic seed Relative Abundance RT = 7.07100 296.0432 (-0.8 mDa) **CALTECH Photooxidation Experiment** RT = 6.59RT = 6.39296.0454 (1.4 mDa) 296.0474 (3.4 mDa) Limonaketone/H₂O₂/NO/highly acidic seed RT = 7.071007 296.0432 (-0.8 mDa) **CALTECH Photooxidation Experiment** RT = 6.59296.0434 (-0.6 mDa) RT = 6.40296.0443 (0.3 mDa) 5.80 6.20 6.60 7.00 7.40 7.80 5.40 Time (min)


Formation of *m/z* 296 *d*-limonene Nitrooxy Organosulfates

limonene
$$OH/O_2/NO$$
 $OH/O_2/NO$
 $OH/O_2/$


- Nighttime-oxidation of limonene in the presence of highly acidic seed:
 No m/z 296 nitrooxy organosulfates produced possibly due to large nucleation event
- None of the other monoterpenes with two double bonds examined in this study (i.e., α -/ γ -terpinene and terpinolene) were found to produce m/z 296 nitrooxy organosulfates
- RTs and Tandem MS data varied slightly between ambient and limonene m/z 296 compounds, suggesting a unknown "limonene-like" monoterpene as source

[Di Carlo et al., 2004, Science] - other unknown terpene-like compounds with substantial OH reactivity

Source of m/z 305 Nitrooxy Organosulfates ($C_9H_{14}NO_8S^-$)

Formation of *m/z* 305 Isoprene Nitrooxy Organosulfates

- Please visit poster by Claeys et al. (SOA Formation/Mechanisms Session) for details of structural characterization
- Surratt et al. [2008, J. Phys. Chem. A] also contains further details

Atmospheric Significance of Organosulfates

 Upper limit estimate (i.e. subtraction of IC-sulfate from XRF/PIXE-total S) indicates that ~ 30% of the total ambient OM could be in the form of organosulfates for one site

[Lukács et al., 2008, Atmos. Chem. Phys. Discuss.] - organosulfates in WSOC contribute 6-12% to the total S concentration.

 Organosulfate formation from BVOCs appear to be ubiquitous in ambient aerosol collected from the USA and Europe

- Both the OH-initiated (in presence/absence NO_x) and NO₃-initiated oxidation of BVOCs in the presence of acidified ammonium sulfate seed aerosol leads to organosulfates
- In continental aerosol, these compounds have a mixed biogenic and anthropogenic (i.e. NO_x and SO_x) origin
 - Aerosol from remote regions also appear to contain organosulfates See Claeys et al. Poster (Marine Aerosols)

 Organosulfates can be regarded as humic-like substances - multifunctional compounds containing hydroxyl, carboxyl, sulfate, and nitrooxy groups

Acknowledgements

• Funding:

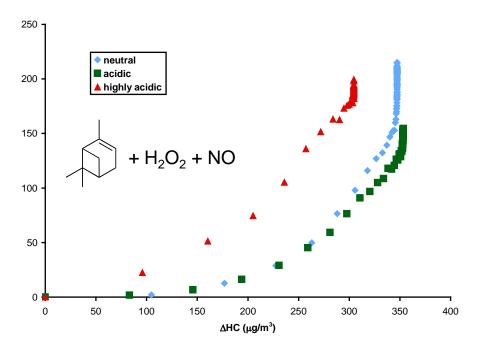
• Colleagues/Organizations:

Yoshi Iinuma - Institut fur Tropospharenforschung - Leipzig, Germany

Allen Goldstein and Dave Worton - UC Berkeley

SEARCH Network

Grant # DE-FG02-05ER63983


Belgian Federal Science Policy Office (Contract SD/AT/02A)

Research Foundation - Flanders

Questions??

Organosulfates Observed in Chamber Experiments

 widest number/variety of organosulfates formed under the intermediate-NO_X and highly acidic condition - consistent with growth curves:

 highly acidic seed forms organic aerosol more quickly than other seed types -Mg:SO₄ molar ratio increased by 16-30% (indicates loss by reaction)

Characterization of Organosulfates

- Sample preparation
 - filters extracted in methanol by ultrasonic agitation
 - concentrated (via N₂ or rotavap)
 - reconstituted with 1:1 (v/v) methanol:water solvent mixture
- UPLC/ESI-high resolution TOFMS
 - instrument: Waters UPLC coupled to Waters LCT Premier XT TOFMS
 - negative ion mode; W reflectron (mass resolution ~ 12000)
 - accurate mass measurements lock mass correction (leucine enkaphlin; MW = 555)
 - Waters ACQUITY UPLC HSS column (reverse-phase)
- HPLC/ESI-Linear Ion Trap Mass Spectrometry (LITMS)
 - negative ion mode
 - tandem MS measurements structural elucidation & confirmation
 - Waters Atlantis

Confirmation of Organosulfate Formation

Organosulfate Formation in Isoprene SOA:

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

neutral seed

acidic seed

 Although not evident in Figure A, SO₄²- decays by 20% over 9 hours (wall-loss) • Shows SO₄²- decays by **60%** over 6 hours - much faster than neutral seeded case (chemical reaction!)

[Surratt et al., ES&T, 2007]

Organosulfate Formation in α -pinene SOA:

 highly acidic seed forms organic aerosol more quickly than other seed types -Mg:SO₄ molar ratio increased by 16-30% (indicates loss by reaction)

Photooxidation (OH-initiated) Experimental Conditions

- T ~ 25 °C, RH < 9%
- NO_x conditions [Ng et al., ACP, 2007]
 - NO_x -free: $H_2O_2 + hv \rightarrow OH + OH$ (high HO_2/NO ratio)
 - intermediate- NO_x : $H_2O_2 + hv \rightarrow OH + OH$ (switch from high- NO_x to low- NO_x)
 - high-NO_x: HONO + h ν → OH + NO (low HO₂/NO ratio)
- Seed Aerosol Acidities
 - neutral: 15mM (NH₄)₂SO₄
 - acidic: $15\text{mM} (NH_4)_2SO_4 + 15\text{mM} H_2SO_4$
 - highly acidic: 30mM MgSO₄ + 50mM H₂SO₄
- \square α -Pinene examined over all NO_x conditions and aerosol acidities
- All other monoterpenes examined only under intermediate-NO_x and highly acidic conditions

Nighttime-Oxidation (NO₃-initiated) Experimental Conditions

- Nitroxy-organosulfates recently shown to form more readily under nighttime conditions in ambient aerosol [linuma et al., ES&T 2007]
- T ~ 20 °C, RH < 9%
- NO₃ radical source: 600 ppb NO₂ + 200 ppb O₃
 - when O₃ drops to ~ 45 ppb monoterpene injected
 - theoretical calculations show $[NO_3]_{initial} \sim 500$ ppt (assuming no loss of N_2O_5)
 - NO₃ dominates initial oxidation
- \square α -pinene examined under neutral and highly acidic conditions
- d-limonene and I-limonene examined only under highly acidic conditions